參考文獻
[1]Tilman, D., Balzer, C., Hill, J. et al., 2011. Global food demand and the sustainable intensification of agriculture. PNAS.
[2]Chen, K., Wang, Y., Zhang, R., et al. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology.
[3]Puchta, H., Dujon, B. and Hohn, B., 1993. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research.
[4]Wright, D.A., Townsend, J.A., Winfrey Jr, R.J., et al. 2005. High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal.
[5]Christian, M., Cermak, T., Doyle, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics.
[6]Mali, P., Yang, L., Esvelt, K.M., et al. 2013. RNA-guided human genome engineering via Cas9. Science.
[7]Shan, Q., Wang, Y., Li, J., et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature biotechnology.
[8]Nekrasov, V., Staskawicz, B., Weigel, D., et al. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology.
[9]Li, J.F., Norville, J.E., Aach, J., et al. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology.
[10]Zhang, Y., Pribil, M., Palmgren, M. et al. 2020. A CRISPR way for accelerating improvement of food crops. Nature Food.
[11]Woo, J.W., Kim, J., Kwon, S.I., et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology.
[12]Liang, Z., Chen, K., Li, T., et al. 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications.
[13]Zhang, Y., Liang, Z., Zong, Y., et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications.
[14]Shimatani, Z., Kashojiya, S., Takayama, M., et al. 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology.
[15]Zhang, R., Liu, J., Chai, Z., et al. 2019. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants.
[16]Ali, Z., Eid, A., Ali, S. et al. 2018. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Research.
[17]Lowe, K., La Rota, M., Hoerster, G., et al. 2018. Rapid genotype “independent” Zea mays L.(maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology-Plant.
[18]Lowe, K., Wu, E., Wang, N., et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell.
[19]Nelson‐Vasilchik, K., Hague, J., Mookkan, M.,et al. 2018. Transformation of recalcitrant sorghum varieties facilitated by baby boom and Wuschel2. Current Protocols in Plant Biology.
[20]Zhang, Q., Zhang, Y., Lu, M.H., et al. 2019. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiology.
[21]Demirer, G.S., Zhang, H., Matos, J.L., et al. 2019. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology.
[22]Kwak, S.Y., Lew, T.T.S., Sweeney, C.J., et al. 2019. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology.
[23]Zhang, H., Demirer, G.S., Zhang, H.,et al. 2019. DNA nanostructures coordinate gene silencing in mature plants. PNAS.
[24]Santana, I., Wu, H., Hu, P. et al. 2020. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications.