1.www.Begin-NGS.org
2.https://radygenomics.org/begin-ngs-newborn-sequencing/
3.Owen, M.J., Lefebvre, S., Hansen, C. et al. An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat Commun 13, 4057 (2022). https://doi.org/10.1038/s41467-022-31446-6
4.Kingsmore SF, Smith LD, Kunard CM, et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am J Hum Genet. 2022;109(9):1605-1619. doi:10.1016/j.ajhg.2022.08.003
https://www.cell.com/ajhg/fulltext/S0002-9297(22)00355-X
5.Ding Y, Owen M, Le J, et al. Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots. NPJ Genom Med. 2023;8(1):5. Published 2023 Feb 14. doi:10.1038/s41525-023-00349-w
https://www.nature.com/articles/s41525-023-00349-w
6.French CE, Delon I, Dolling H, et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive Care Med. 2019;45(5):627–36. https://doi.org/10.1007/s00134-019-05552-x.
7.Kingsmore SF, Cakici JA, Clark MM, et al. A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants. Am J Hum Genet. 2019;105(4):719–33.
https://doi.org/10.1016/j.ajhg.2019.08.009.
8.Peterson B, Hernandez EJ, Hobbs C, et al. Automated prioritization of sick newborns for whole genome sequencing using clinical natural language processing and machine learning. Genome Med. 2023;15(1):18. Published 2023 Mar 16. doi:10.1186/s13073-023-01166-7
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-023-01166-7